
Neuronal Signals - NBDS 5161

Session 8: Writing algorithms

Lectures can be downloaded from

http://hayar.net/NBDS5161

Abdallah HAYAR

Updated Tentative Schedule for Neuronal Signals (NBDS 5161)

One Credit–Hour, Summer 2010

Location: Biomedical Research Building II, 6th floor, conference room,

Time: 9:00 -10:20 am

Session Day Date Topic Instructor

1 Tue 6/1 Design of an electrophysiology setup Hayar

2 Thu 6/3 Neural population recordings Hayar

3 Thu 6/10 Single cell recordings Hayar

4 Fri 6/11 Analyzing synaptic activity Hayar

5 Mon 6/14 Data acquisition and analysis Hayar

6 Wed 6/16 Analyzing and plotting data using OriginLab Hayar

7 Fri 6/18 Detecting electrophysiological events Hayar

8 Mon 6/21 Writing algorithms in OriginLab® Hayar

9 Wed 6/23 Imaging neuronal activity Hayar

10

Fri

6/25

Exam and students’ survey - Laboratory
demonstration

Hayar

11 Fri 7/9 Article presentation I: Electrophysiology Hayar

12 Mon 7/12 Article presentation II: Imaging Hayar

13 Wed 7/14 Exam and students’ survey about the course Hayar

Student List

 Name E-mail Regular/Auditor Department Position

1 Simon, Christen CSimon@uams.edu Regular

(form signed)

Neurobiology &

Developmental Sciences

Graduate Neurobiology –

Mentor: Dr. Garcia-Rill

2 Kezunovic, Nebojsa NKezunovic@uams.edu Regular

(form signed)

Neurobiology &

Developmental Sciences

Graduate Neurobiology –

Mentor: Dr. Garcia-Rill

3 Hyde, James R JRHyde@uams.edu Regular
(form signed)

Neurobiology &
Developmental Sciences

Graduate Neurobiology –
Mentor: Dr. Garcia-Rill

4 Yadlapalli,
Krishnapraveen

KYadlapalli@uams.edu Regular
(form signed)

Pediatrics Research Technologist –
Mentor: Dr. Alchaer

5 Pathan, Asif APATHAN@uams.edu Regular

(form signed)

Pharmacology & Toxicology Graduate Pharmacology –

Mentor: Dr. Rusch

6 Kharade, Sujay SKHARADE@uams.edu Regular

(form signed)

Pharmacology & Toxicology Graduate Pharmacology –

4
th
 year - Mentor: Dr. Rusch

7 Howell, Matthew MHOWELL2@uams.edu Regular
(form signed)

Pharmacology & Toxicology Graduate Interdisciplinary
Toxicology - 3

rd
 year -

Mentor: Dr. Gottschall

8 Beck, Paige B PBBeck@uams.edu Regular
(form signed)

College of Medicine Medical Student – 2
nd

 Year -
Mentor: Dr. Garcia-Rill

9 Atcherson, Samuel R SRAtcherson@uams.edu Auditor
(form signed)

Audiology & Speech
Pathology

Assistant Professor

10 Detweiler, Neil D NDDETWEILER@uams.edu Auditor
(form not signed)

Pharmacology & Toxicology Graduate Pharmacology –
1

st
 year

11 Thakali, Keshari M KMThakali@uams.edu Unofficial auditor Pharmacology & Toxicology Postdoctoral Fellow –

Mentor: Dr. Rusch

12 Boursoulian, Feras FBoursoulian@uams.edu Unofficial auditor Neurobiology &
Developmental Sciences

Postdoctoral Fellow –
Mentor: Dr. Hayar

13 Steele, James S JSSTEELE@uams.edu Unofficial auditor College of Medicine Medical Student – 1
st
 Year –

Mentor: Dr. Hayar

14 Smith, Kristen M KMSmith2@uams.edu Unofficial auditor Neurobiology &

Developmental Sciences

Research Technologist –

Mentor: Dr. Garcia-Rill

15 Gruenwald, Konstantin kjoachimg@gmail.com Unofficial auditor Neurobiology &

Developmental Sciences

High school Student –

Mentor: Dr. Hayar

16 Rhee, Sung RheeSung@uams.edu Unofficial auditor Pharmacology & Toxicology Assistant Professor

17 Light, Kim E LightKimE@uams.edu Unofficial auditor Pharmaceutical Sciences Professor

An 'algorithm' is an effective method for solving a problem

expressed as a finite sequence of instructions. Algorithms are

used for calculation, data processing, and many other fields.

Each algorithm is a list of well-defined instructions for

completing a task. Starting from an initial state, the instructions

describe a computation that proceeds through a well-defined

series of successive states, eventually terminating in a final

ending state.

This is an algorithm that tries to figure out why

the lamp doesn't turn on and tries to fix it

using the steps. Flowcharts are often used to

graphically represent algorithms.

A simple flowchart for

computing factorial N (5!)

5!=1*2*3*4*5 = 120

N!, is the product of all

positive integers less

than or equal to N

A flowchart is a common type of

diagram, that represents an algorithm,

showing the steps as boxes of various

kinds, and their order by connecting

these with arrows

Algorithms and Flowchart

Writing Scripts in Origin

LabTalk Origin C
Compiled? No Yes

Programs can also be saved to disk in a pre-

compiled form for faster recall.

Speed An interpreted language. Relatively slow, especially in

the case of loops requiring many iterations

A compiled language, so it is much faster (up to

20 times) than LabTalk.

Especially well suited to computationally

intensive operations and it is ideal for user-

defined curve fitting functions.

Access to internal

Origin objects

Yes

Since LabTalk pre-dates Origin C, it provides somewhat

better access than Origin C.

Yes

Access is object-oriented. At present, it does

not provide as much access to internal objects

and properties as LabTalk. This should rapidly

improve.

Case sensitive?

(commands and

variables)

No

Variable a and variable A are considered to be the same

variable.

Yes, Origin C is case sensitive.

Variable A and variable a would be considered

to be different variables.

The same applies to function names.

Functions No

LabTalk has the ability to call sections in script files

having .OGS extensions. This allows the passing of

simple text arguments.

Yes

Standard rules of C language apply for calling

functions. This is much more convenient than

calling script file sections in LabTalk.

Mode of

execution

LabTalk scripts are usually organized by sections in

.OGS script files. They can be called using the

run.section() command from either Script window or from

another LabTalk script.

Also, LabTalk scripts can be typed directly to the Script

window and executed from there. They can be

associated with menu commands or toolbar buttons, or

with buttons on various Origin windows (graphs,

worksheets, etc.). LabTalk scripts can also be executed

from Origin C function.

Origin C code is always organized in functions.

Functions can be called from other Origin C

functions in the standard way by passing

arguments of different types.

They can be called from the Script window,

from LabTalk scripts, from menu commands

and toolbars buttons, as well as from buttons

on various Origin windows (graphs,

worksheets, etc.).

Contrasting LabTalk and Origin C

LabTalk Origin C

Variable types Yes

Only numeric (double precision) and a limited number

of string variables are supported.

Variables representing internal Origin objects are not

supported. It is possible to refer to various global

objects, such as the active window, layer, etc.

Yes

All standard C types are supported, as are pointers.

Also, variables representing internal Origin objects are supported

(access to those objects is object-oriented). All variables must be

declared before being used.

Local variables No Yes

Local variables in functions must be declared before being used, (as is

standard in the C language).

Global variables Yes

All variables in LabTalk are global variables.

These global variables are either numeric (do not have

to be declared before being used since they are

defined and space in memory is reserved for them on

first use) or string (there are 26 LabTalk string

variables, named %A, %B, etc. Some, such as %H,

(contains the name of the active window), are

reserved.

Yes

All global variables must be declared outside functions before being

used.

Multidimensional objects No Yes

Origin C supports vector and matrix classes (and the associated

classes Dataset and Matrix which provide access to Origin’s internal

datasets and matrices). These can be dereferenced using [] notation

(vector v;…;. v[3] = …;) to access individual elements.

Collections No Yes

Origin C supports various collections of internal Origin objects, such as

the collection of all windows in a project, all columns in a worksheet, all

data plots in a graph layer, etc. Collections allow for easy enumeration

and access to the items being held in the collection.

Control structures LabTalk supports C-like if-else and switch

statements. It also supports C-like for-loop, as well as

LabTalk-specific repeat and loop looping control

structures.

It supports all C-style control structures (if-else, switch, for, while, do-

while, goto). It also supports foreach loops which provide a simple way

to enumerate all members of a collection.

Writing user-defined fitting

functions

Yes Yes

Compiled Origin C functions greatly increase curve fitting speed.

Calling external functions

(functions written in external

DLLs)

No Yes

A function implemented in an external DLL (the function must be

exported from the DLL in a standard way) can be called from Origin

C. This enables use of proprietary routines written in standard Windows

DLLs, to be used inside of Origin. This is no more difficult than calling

another Origin C function.

A computer program in the form of a human-readable, computer

programming language is called source code. Source code may be

converted into an executable image by a compiler or executed

immediately with the aid of an interpreter.

Either compiled or interpreted programs might be executed in a batch

process without human interaction, but interpreted programs allow a user

to type commands in an interactive session. In this case the programs

are the separate commands, whose execution is chained together. When

a language is used to give commands to a software application (such as

a shell) it is called a scripting language.

Compiled computer programs are commonly referred to as executables,

binary images, or simply as binaries — a reference to the binary file

format used to store the executable code. Compilers are used to

translate source code from a programming language into either object

code or machine code.

Operator Use

+ Addition

- Subtraction

* Multiplication

/ Division

^ Exponentiate (X^Y raises X to the Yth power)

& Bitwise AND operator. Acts on the binary bits of a number.

| Bitwise OR operator. Acts on the binary bits of a number.

Arithmetic Operators

10*5+3*2-10/5=;

10*5+3*2-10/5=54

5+6*2=

5+6*2=17

(5+6)*2=

(5+6)*2=22

2^16=;

2^16=65536

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

10 & 11 = 10

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

10 | 00 = 10

Loop Repeat For
Description The loop is used when a single

variable is being incremented

with each successive loop.

The repeat loop is used when a set of

actions must be repeated without any

alterations.

The for loop is used for all other

situations.

Syntax loop (variable, startVal, endVal)

{script};

repeat value {script}; for (expression1; expression2;

expression3) {script};

Example 1:

Count from

1 to 4

loop(X,1,4) {X=}

X=1

X=2

X=3

X=4

X=1;repeat 4 {X=;X=X+1}

X=1

X=2

X=3

X=4

for(X=1;X<=4;X++) {X=}

X=1

X=2

X=3

X=4

Example 2:

Calculate

factorial N!

N=1;loop(X,1,4) {N=N*X;N=}

N=1

N=2

N=6

N=24

N=1;X=1;repeat 4 {N=N*X;X=X+1;N=}

N=1

N=2

N=6

N=24

for(X=1,N=1;X<=4;X++) {N=N*X;N=}

N=1

N=2

N=6

N=24

Conditional and Loop Structures

loop (X,1,8) { if (X <= 4) {X=} }

X=1

X=2

X=3

X=4

loop (X,1,8) { if (X > 4) {X=} }

X=5

X=6

X=7

X=8

loop (X,1,8) { if (X>3 && X<7) {X=} }

X=4

X=5

X=6

loop (X,1,8) { if (X/2 == int(X/2)) {X=} }

X=2

X=4

X=6

X=8

loop (X,1,8) { if (X/2 != int(X/2)) {X=} }

X=1

X=3

X=5

X=7

loop (X,1,4) { if (X/2 == int(X/2)) {type $(X) is even} else {type $(X) is odd} }

1 is odd

2 is even

3 is odd

4 is even

Logical and Relational Operators

Operator Use

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

&& And

|| Or

An expression involving logical or

relational operators evaluates to either

true (non-zero) or false (zero).

Decision Structures

Name Brief Description Examples

Abs(x) Returns the absolute value of x abs(-5)= 5; abs(5)= 5; abs(0)= 0;

Cos(x) Returns value of cosine for each value of the given x. cos(0)= 1; cos(pi)= -1; cos(pi/2)= 0

Exp(x) Returns the exponential value of x. exp(1)= 2.718282; exp(0)= 1

Int(x) Returns the truncated integer of x. int(7.9) = 7; int(7.001)= 7; int(7.0)= 7

Ln(x) Returns the natural logarithm value of x. ln(1)= 0; ln(2.718282)= 1; ln(exp(1))= 1

Log(x) Returns the base 10 logarithm value of x. log(1)= 0; log (10)= 1; log (100)= 2

Mod(x, y) Return the integer modulus (the remainder from division) of

integer x divided by integer y; similar to: x- int(x/y)*y

mod(10,3)= 1; mod(11,3)= 2; mod(12,3)= 0;

Round(x, n) Returns the value (or dataset) x to n decimal places. round(9.124,2)= 9.12; round(9.124,2)= 9.13;

Sqrt(x) Returns the square root of x; similar to: x^(1/2) sqrt(9)= 3; sqrt(10)=3.162278

Rnd() Return a value between 0 and 1 from a uniformly distributed

sample.

rnd()=0.6933578; rnd()=0.240543

Grnd() Returns a value from a normally (Gaussian) distributed

sample,with zero mean and unit standard deviation.

Mathematical Functions

loop(x,1,1000) {col(1)[x]=rnd()}

Col(1)= uniform(1000,0)

loop(x,1,1000) {col(1)[x]=grnd()};

Col(1)=normal(1000,0)

Normally (Gaussian) distributedUniformly distributed

Col(1)=normal(1000,0)*5+100;

Col(1)=poisson(100000,1,)

Poisson distributed

Normally (Gaussian) distributed

Name Brief Description Examples

Data(x1, x2, inc) Create a dataset with values ranging

from x1–x2 with an increment, inc.

col(1)=data(0,1000,0.2)

Ave(dataset, n) Breaks dataset into groups of size n,

finds the average for each group, and

returns a range containing these

values.

col(2)=ave(col(1),5)

col(1)={a,b,c,d...} Fills column 1 with data. col(1)={1,3,4,7,10}

Sum(dataset) Returns a range whose i th element

is the sum of the first i elements of

the dataset dataset.

col(2)=sum(col(1))

Diff(dataset) Returns a dataset that contains the

difference between adjacent elements

in dataset.

col(3)=diff(col(1))

Histogram(dataset,

inc, min, max)

Generates data bins from dataset in

the specified range from min to max

col(4)=histogram(col(1),3,0,15)

sort(dataset) Returns a dataset that contains

dataset, sorted in ascending order.

col(5)=sort(col(3))

Xindex(x, dataset) Returns the index number of the cell

in the X dataset associated with

dataset, where the cell value is

closest to x.

Statistical Functions

col(1)={1,3,7,13}; sum (col(1)); sum.mean=; sum.total=; sum.min=; sum.max=; sum.sd=; sum.n=

SUM.MEAN=6

SUM.TOTAL=24

SUM.MIN=1

SUM.MAX=13

SUM.SD=5.291503

SUM.N=4

Property Description

limit.iMax Corresponding index for maximum Y value

limit.iMin Corresponding index for minimum Y value

limit.size Total size (number of points) for dataset.

limit.xMax Maximum X value.

limit.xMin Minimum X value.

limit.yMax Maximum Y value.

limit.yMin Minimum Y value.

limit col(2);limit.iMax=;limit.iMin=;limit.size=;limit.xMax=;limit.xMin=;limit.yMax=;limit.yMin=;

LIMIT.IMAX=5

LIMIT.IMIN=1

LIMIT.SIZE=10

LIMIT.XMAX=1.8

LIMIT.XMIN=0

LIMIT.YMAX=14

LIMIT.YMIN=2

Data Access, Manipulation, and Calculation

Script example Interpretation

Data10_A={1,3,5,7} Fill Worksheet ―Data10‖ column ―A‖ with specific values

%(Data10,2)={5,8,12}; Fill Worksheet ―Data10‖ column #2 with specific values

%(Data10,2,5)=20 Fill Worksheet ―Data10‖ column #2 row# 5 with value 20

col(3)[4]=10 Fill column#3 row#4 with value 10

col(4)=col(A)/2 Column#4 = column ―A‖ divided by 2

wcol(10/2)=col(2) Column# 10/2=5 is filled with similar values as column#2

loop(x,1,6) {col(6)[x]=2*x} Fill column#6 row# x with double the value of x

Truncate a waveform

To truncate data beyond a value of -45 in column 2 that contains 28800 points;

loop(i,1,28800){if(wcol(2)[i]>-45){col(2)[i]=-45}}

Appending traces in Origin

All traces from column 3 to 10 will be appended to column(2)

loop(x,3,10){copy -a col(%(x)) col(2)}

Transform bursts of spikes into single events

To keep the first spike in a burst and discard events that appear after in the same burst. Spikes

that are preceded by a short interspike interval (<IBI) will be ignored.

Col(1) contains time of spike occurrence in sec;

IBI= minimun interspike interval in ms

Col (burst) will contain the time of occurrence of the first spike in a burst

IBI=75;for(i=1,j=0;col(1)[i+1];i++){if((col(1)[i+1]-col(1)[i])>IBI){j++;col(burst)[j]=col(1)[i+1]}};

Shuffle time intervals

col(1) = time of events; col(2) = amplitude of events

col(3) = interevents intervals, shuffled interevents intervals, shuffled time of events

rnd()*1000 gives random numbers between 0 and 1000

col(3)=diff(col(1));limit col(3);

loop(i,1,limit.size) {A=col(3)[i]; R=rnd()*limit.size+1; col(3)[i]=col(3)[R]; col(3)[R]=A};

Measure the time a script will take to execute

sec -i;sec t;t=;for(x=1;x<5000;x++){y=x*x};sec t;t=;

T=0

T=0.25

Construct normalized interspike histograms for many columns

win -t data template A;win -a A;ClearWorksheet A; //create worksheet named A; Activates worksheet A; ClearWorksheet

worksheet -n 2 B1; //rename column2 as B1

loop(i,1,14){

worksheet -v B$(i); //verify that a column B$(i) exists otherwise create it

%(A,i)=diff(%(Data1,i))}; //calculate intespike intervals for all columns

win -t data template B;win -a B;ClearWorksheet B; //create worksheet named B; activates worksheet B; ClearWorksheet

worksheet -n 2 B1; //rename column2 as B1

Bin=1;loop(i,1,14){

worksheet -v B$(i); //verify that a column B$(i) exists otherwise create it

sum(diff(%(Data1,i)));%(B,1)=data(Bin/2,sum.max,Bin);//generate X axis column for histograms

%(B,i+1)=histogram(diff(%(Data1,i)),Bin,,sum.max)/sum.n}; //generate normalized interspike interval histograms

Calculate instantaneous spike and burst frequency, number of spikes/burst, burst duration

col(1) = time of spike occurrence (ms)

col(stime)= time of spike occurrence (min), X1 axis

col(ISI)= interspike interval (ms)

col(msfreq)= mean spike frequency (Hz)

col(burst)= time of burst ocurrence (ms)

col(btime)= time of burst ocurrence (min), X2 axis

col(IBI)= interburst interval (ms)

col(mbfreq)= mean burst frequency (Hz)

col(bd)=b= burst duration (ms)

col(mbd)=mean burst duration (ms)

col(spb)=n= number of spikes/ burst, n > 1

col(mspb)=mean number of spikes per burst (n)

col(mspbfreq)=mean spike frequency within a burst (Hz)

col(ratio)=col(mspb)/col(mbfreq)

col(stime)=col(1)/60000;

col(ISI)=diff(col(1));col(msfreq)=col(ISI);

ave -n 60 col(msfreq);col(msfreq)=1000/col(msfreq);

S=75;n=1;j=1;b=0;for(i=1;col(1)[i+1];i++){

if(col(ISI)[i]>S){col(burst)[j]=col(1)[i+1];

col(bd)[j]=b;b=0;col(spb)[j]=n;n=1;j++} else {

n++;b+=col(ISI)[i]}};

col(btime)=col(burst)/60000;

col(IBI)=diff(col(burst));col(mbfreq)=col(IBI);

ave -n 60 col(mbfreq);col(mbfreq)=1000/col(mbfreq);

col(mbd)=col(bd);ave -n 60 col(mbd);

col(mspb)=col(spb);ave -n 60 col(mspb);

col(mspbfreq)=(1000/col(mbd))*(col(mspb)-1);

col(ratio)=col(mspb)/col(mbfreq);

window -a Graph1;layer1.x.rescalemargin=0;layer -s 1;layer -at;

