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Background: The options for severely disabled children with intact cognition to interact
with their environment are extremely limited. A brain computer interface (BCI) has
the potential to allow such persons to gain meaningful function, communication, and
independence. While the pediatric population might benefit most from BCI technology,
research to date has been predominantly in adults.

Methods: In this prospective, cross-over study, we quantified the ability of healthy
school-aged children to perform simple tasks using a basic, commercially available,
EEG-based BCI. Typically developing children aged 6–18 years were recruited from the
community. BCI training consisted of a brief set-up and EEG recording while performing
specific tasks using an inexpensive, commercially available BCI system (EMOTIV EPOC).
Two tasks were trained (driving a remote-control car and moving a computer cursor)
each using two strategies (sensorimotor and visual imagery). Primary outcome was
the kappa coefficient between requested and achieved performance. Effects of task,
strategy, age, and learning were also explored.

Results: Twenty-six of thirty children completed the study (mean age 13.2 ± 3.6 years,
27% female). Tolerability was excellent with >90% reporting the experience as neutral
or pleasant. Older children achieved performance comparable to adult studies, but
younger age was associated with lesser though still good performance. The car
task demonstrated higher performance compared to the cursor task (p = 0.027).
Thought strategy was also associated with performance with visual imagery strategies
outperforming sensorimotor approaches (p = 0.031).

Conclusion: Children can quickly achieve control and execute multiple tasks using
simple EEG-based BCI systems. Performance depends on strategy, task and age.
Such success in the developing brain mandates exploration of such practical systems
in severely disabled children.

Keywords: brain computer interfaces (BCI), pediatrics, typically developing children, EEG, Emotiv EPOC

Abbreviations: BCI, brain computer interface; ECP, Emotive control panel; GO, goal oriented; MI, motor imagery; RC,
remote controlled.
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INTRODUCTION

Brain computer interfaces (BCI), also known as brain machine
interfaces, have the potential to improve the lives of people
with severe disability. BCI typically work by detecting thought-
induced changes in brain activity, relaying these signals
to computer algorithms to detect associated patterns, and
transmitting resulting commands to control effector devices such
as a wheelchair, robotic arm, or computer mouse (Daly and
Wolpaw, 2008). Original BCI systems were invasive, requiring
implantation of recording devices directly into the brain, and
ongoing physical external connections. However, the ability of
non-invasive approaches, such as surface electroencephalogram
(EEG)-based BCI, are rapidly expanding to accomplish similar
utility (Wolpaw et al., 2002).

Few clinical circumstances are more tragic than locked-in
syndrome where an intellectually capable individual is physically
trapped in a body that does not move. This syndrome affects
adults with conditions such as brainstem stroke, neuromuscular
conditions like amyotrophic lateral sclerosis, and spinal cord
injury where most BCI clinical evidence to date exists. In such
circumstances, BCI provides opportunities for greater autonomy
and interaction with the world by allowing individuals to
directly connect their mental thoughts with BCI effector devices
(Hochberg et al., 2012; De Vos et al., 2014). A young man with
a cervical spinal cord injury and quadriplegia was recently able
to reach out, grab a glass, and pour it using an implanted BCI
linked to functional electrical stimulation of his arm (Bouton
et al., 2016).

Despite the remarkable potential of BCI and the large global
burden of severe disability in children, pediatric BCI studies
have been limited (Breshears et al., 2011). Cerebral palsy is
the leading cause of lifelong neurological disability, affecting
17 million people worldwide (Oskoui et al., 2013). Patients
with severe quadriplegic cerebral palsy and intact cognition
are ideal BCI candidates but few studies have focused on this
population. Severe neuromuscular conditions and spinal cord
injury provide additional pediatric examples of the locked-in
syndrome. Children with perinatal stroke account for most
hemiparetic cerebral palsy where motor issues are comparable to
adult stroke hemiparesis (Kirton, 2013). BCI offer new avenues
for rehabilitation such as recent adult stroke trials suggesting that
combining BCI with traditional therapies may enhance function
in hemiparetic patients (Ang et al., 2014; Donati et al., 2016).
Limited studies have attempted to combine EEG-based BCI
with functional electrical stimulation as a possible rehabilitation
method for children with cerebral palsy (Jang et al., 2016;
Kim and Lee, 2016). Fundamental to these potential pediatric
applications is a gap in knowledge regarding if and how a
developing, and often injured, young brain can acquire control of
a BCI. An improved understanding of the abilities and challenges
faced by children in using simple BCIs will inform protocol
development for future studies in disabled pediatric populations.

Different mental strategies can be employed to drive BCI
systems. For example, adults often use motor imagery (MI;
Prasad et al., 2010; Ang et al., 2011). Imagined motor movements
of the body generate reproducible alterations in sensorimotor

rhythms such as EEG oscillations in the mu (7–13 Hz) and
beta (13–30 Hz) bands (Nicolas-Alonso and Gomez-Gil, 2012).
Evidence suggests that children have comparable sensorimotor
rhythms related to hand movements (Kim et al., 2016). However,
pediatric studies of BCI strategies are lacking and ability likely
depends on cognitive capacity. For example, it may be non-
intuitive for children to try and move an object using a common
MI approach such as “think about squeezing both your hands.”
A more practical approach might be using simpler “goal-oriented
thoughts” such as imaging the desired effect, for example “think
about the cursor or car moving toward the target.” In addition
to strategy, the nature of the task attempted also influences
BCI performance. Typical tasks, such as moving a cursor on
a computer screen, are probably less interesting for children
and the resulting lack of sustained engagement, attention, and
motivation may be barriers to success. There is therefore a need
to better understand pediatric specific issues of BCI applications.

We conducted a prospective, cross-over interventional study
to estimate the ability of healthy school-aged children to perform
simple tasks using different strategies and a basic, commercially
available BCI. We hypothesized that older age and MI approaches
would be associated with improved performance.

METHODS

Participants
Participants were recruited from the Healthy Infants and
Children’s Clinical Research Program (HICCUP1), a population-
based database of families interested in participating in medical
research. Inclusion criteria were typical neurodevelopment,
age 6–18 years, and informed consent/assent. Children with
neurological or psychiatric conditions or taking neuroactive
medication were excluded. Participants were compensated with
two movie passes. Prior to participation, written assent and
parental consent were obtained in accordance with the Conjoint
Health Research Ethics Board, University of Calgary who
approved the study. All subjects gave written informed consent
in accordance with the Declaration of Helsinki.

BCI System
The EPOC (EMOTIV, United Sates), a commercially available 16-
electrode dry contact headset, was used to collect and transmit
EEG data. The head of each subject was measured and marked
according to the standard 10–20 system. The headset had 14
electrodes located at AF3, AF4, F3, F4, F7, F8, FC5, FC6, P7,
P8, T7, T8, O1, O2 and 2 additional reference electrodes on
the right and left mastoids (Figure 1A). The headset electrodes
were immersed in 0.9% saline to ensure a reliable connection
before being placed on the head. Attempts to position the headset
according to the 10–20 international system were made, however,
the small head size of children and the structure of the device
resulted in some variability in electrode placement (estimated
within 1–2 cm from target location). The connection was verified
using the EMOTIV Control Panel program (vendor provided

1www.hiccupkids.ca
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FIGURE 1 | BCI system and tasks. (A) Child wearing EPOC headset completing the car task. Informed consent was obtained from the parent regarding publication.
(B) Schematic of the car task. (C) Cursor task presented on a computer screen.

software) which provides real-time, color-coded feedback on
signal contact quality.

The EPOC had an internal sampling rate of 2048 Hz which
was downsampled to 128Hz to produce a cleaner signal and
wirelessly transmitted to a laptop computer. The control panel
program acquired data and executed training. Training epochs
were then defined by discrete 8-second samples of EEG data
and stored accordingly. The classification depends on Event-
Related Desynchronization phenomenon. It uses Probabilistic
Neural Network (PNN) and Radial Basis Function (RBF) to
distinguish between baseline and the training epochs to extract
the relative signal indicative of the trained thought. Detection
of such a trained action was then outputted as a virtual
keystroke to be transmitted to one of the two effectors (car or
cursor).

Upon arrival at the testing location, the participants and their
parents read and signed the consent/assent forms. Participants
were seated at a desk in a large room. They were assigned to
1 of 4 groups based on their order of entrance into the study.
Participants attended two sessions, each separated by at least
one week. In a single session, they completed both tasks using
different strategies to prevent within-session learning effects. To
compensate for order effects, the tasks were counterbalanced in
the second session. Overall, participants were evenly split into 4
groups with initial training approach of car MI, car goal-oriented
(GO), cursor MI, or cursor GO (Table 1).

TABLE 1 | Sequence of task and strategy combinations for each group.

Groups Session 1 Session 2

Car MI Car MI→ Cursor GO Cursor MI→ Car GO

Car GO Car GO→ Cursor MI Cursor GO→ Car MI

Cursor MI Cursor MI→ Car GO Car MI→ Cursor GO

Cursor GO Cursor GO→ Car MI Car GO→ Cursor MI

MI: Motor imagery; GO: Goal-oriented thought.

Tasks and Strategies
Over two sessions, participants attempted a remote-controlled
car and computer cursor task, using two different thought
strategies, GO and MI. Participants attempted both tasks in
each session using a randomly assigned thought strategy in
random order. Order of task completion and strategies used were
alternated for the second session.

In each task, participants were required to prevent the car
or cursor from moving for a given period of time and to then
use a preassigned thought strategy to move the object to its
target. The car moved in a forward direction to cross a finish line
(Figure 1B), while the cursor moved in a rightward direction to a
circular target on a computer screen (Figure 1C). Both tasks were
designed such that they could be completed in comparable time.

Participants began each session by training a neutral and
movement command. During neutral training, participants were
asked to count down backward from 10 in order to engage
in a task that is not associated with the car or cursor moving
task. Participants were randomly assigned to use one of two
thought strategies during the movement training. If assigned
to MI, participants were asked to imagine opening and closing
both of their hands to move the car or cursor during the tasks.
For the GO strategy, participants were asked to visualize the
object of interest moving toward a designated target. Neutral
and movement commands were trained together in an ordered
sequence of doubles; two neutral trainings were accompanied by
two movement trainings which was repeated four times. In total,
each command was presented 8 times. Immediately following this
was the testing phase in which participants completed 10 trials of
the task.

Each trial of the testing phase consisted of a neutral and
movement period. During neutral, participants were asked to
recount their previous training to keep the car or cursor idle for
5 s. They were then instructed to use their designated thought
strategy to move the car or cursor to its target within 20 s. After
completing the first task, participants immediately trained for
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the second task. Event markers were manually added during the
training phase to define the timing of all events.

Object type and the direction of movement varied between
both tasks. The car task was assumed to be more engaging as
it involved the movement of a physical object accompanied by
auditory feedback provided by the electric motor; only visual
feedback was provided in the cursor task. The direction of
object movement was different for both tasks in order to prevent
possible learning effects with the GO command. All trials were
video recorded or data logged for offline analysis and validation.

The primary outcome measure was success of task completion
quantified by Cohen’s kappa, a measure of agreement between the
commands issued by the investigator and the actions performed
by the participant. This is consistent with multiple adult BCI
training studies (Daly et al., 2013; Scherer et al., 2013) facilitating
comparison of our results. A score of 1 represented perfect
agreement and a score of 0 represented chance agreement. In
each trial, to correctly follow the neutral command, participants
needed to hold in the neutral state for the entire 5 s. To correctly
follow the movement command, participants needed to cause at
least some movement, regardless of distance, in the first 8 s of the
20 s trial. The difference in timing is due to the increased difficulty
of the neutral phase.

BCI Experience Survey
Participants answered a series of questions assessing their
personal characteristics, mental tiredness, perceived enjoyment,
difficulty, and preferences on a 5-point Likert scale. Any potential
side effects, adverse events, or unpleasant features were also
recorded.

Analysis
Cohen’s kappa, the primary outcome measure of BCI skill, was
tested for normality. A two-way repeated measures ANOVA
compared the impact of task and strategy on Cohen’s kappa.
Missing data was removed for repeated measures ANOVA. The
impact of age was examined with a Pearson correlation between
individual mean Cohen’s kappa from all four learning attempts.
The between-session and within-session learning effects were
examined with a two-tailed paired t-test. Changes between trials
were analyzed with a two-way repeated measures ANOVA. The
specific impact of strategy on trial-by-trial learning was examined
with a Pearson correlation. All data were analyzed using SPSS 24.
Graphs were created using GraphPad 5.

RESULTS

Population
We recruited 30 healthy children of whom 26 completed the
entire study (73% male, mean [SD] 13.2 [3.6] years, range
6–18). Three participants were unable to be scheduled for the
second session and one dropped out as they found the headset
uncomfortable. Most children enjoyed participating with 55%
reporting a positive experience (4 or 5 on a 5-point Likert scale)
and only 1 (4%) reporting a negative experience. All sessions were
less than 1 h with an average of 45 min. Half of the participants

reported mental fatigue by the end of the session, typically during
the final 10 min. Among those reporting a negative or neutral
experience, the most common complaint (50%) was that the
headset applied too much pressure and caused discomfort. No
other adverse events were reported.

BCI Performance
Across the entire population and all tasks, the primary outcome
was normally distributed with an average Kappa score of 0.46
[0.21] and range of 0.025–0.90. Performance correlated with
increasing age (Figure 2, Pearson’s r = 0.632, 95%CI 0.37–0.83,
p < 0.001). Sex was not associated with performance. Overall,
11/26 (42%) participants achieved a Cohen’s kappa of 0.4 or
higher, a cut-off for competency often used in adult BCI studies
(Scherer et al., 2013; Jeunet et al., 2016).

Task and Strategy
The repeated measures ANOVA demonstrated an effect of both
task and strategy (Figure 3). Higher mean performance scores
were observed for the car (0.518 [0.295]) as compared to the
cursor task (0.393 [0.294], F(1, 25) = 5.52, p = 0.027. Effect of
strategy was also significant as the mean Cohen’s kappa for the
GO strategy (0.506 [0.315]) was higher than for MI (0.403 [0.277],
F(1, 25) = 5.20, p = 0.031).

Tukey’s post hoc test examined the effect of strategy for each
task individually. A difference was observed for the cursor task
in which the GO approach (0.469 [0.280]) was more successful
than MI (0.318 [0.294], t(25) = 2.602, p = 0.015). No such
difference was observed for the car task. The post-experiment
survey revealed no differences in personal preference for one
strategy over the other: 41% preferred GO, 45% preferred MI.
There was no significant interaction between task and strategy,
F(1, 25) = 2.817, p = 0.106.

Comparison within subjects of performance between the
first (0.425 [0.226]) and second (0.488 [0.243]) sessions
revealed possible improved performance in the second session,
t(25) = 1.722, 95% CI –0.14 to 0.01, p = 0.097. Across
all 52 sessions, there were no within-session learning effects,

FIGURE 2 | Relationship between participant average Cohen’s kappa and
age. Pearson’s r = 0.661, n = 26, p < 0.001. The mean and variance across
four training sessions are shown for each participant. The data points are
slightly shifted to reveal vertical error bars which represent SEM.
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FIGURE 3 | Effect of strategy and task on average Cohen’s kappa.
Performance was higher for the car task compared to cursor. Goal-oriented
approaches were more successful for the cursor task. ∗Represent statistically
significant difference with p < 0.05. Error bars represent SEM.

FIGURE 4 | Changes in performance across trials. (A) Comparison of the
changes in time among different groups across trials (n = 26). No effect of trial
was found. (B) Relationship between time required to complete session and
trial number by strategy (n = 26). For MI strategy, Pearson’s r = 0.435,
p = 0.209. For goal oriented strategy, Pearson’s r = –0.513, p = 0.130. Error
bars represent SEM. Points are slightly shifted for clarity.

t(51) = 0.955, 95% CI –0.06 to 0.16, p = 0.344. Performance over
time across the 10 trials demonstrated no effect of trial number
on time, F(9, 106) = 1.03, p = 0.415 (Figure 4A). There was
also no association between strategy and learning across trials
(Figure 4B).

DISCUSSION

Our study demonstrates that children can use a simple,
commercially available BCI and different mental strategies to
train basic tasks in minimal time. Age, task, and strategy appear

to influence the ability of children to use such BCI systems. The
combination of significant efficacy, ease of application, low cost,
and favorable tolerability suggests high potential for non-invasive
BCI systems in pediatric clinical populations.

To our knowledge, there have been no prior studies
quantifying BCI skills in children using such simple BCI systems.
Consistent with BCI studies to date, success rates appear
highly individualized. Adult BCI studies typically label 15–30%
of participants as BCI “illiterate” based on a cut-off of 70%
classification accuracy or 0.40 on Cohen’s kappa (Scherer et al.,
2013; Jeunet et al., 2016). Among our 26 participants, nearly
half achieved such proficiency with much higher rates observed
in some individuals. Our higher BCI illiteracy could be due to
children 10 years of age or younger having more difficulties
(Figure 2). This does not resolve whether adults are superior to
children in BCI performance but supports the ability of young
people to control BCI systems at a practical level.

BCI performance in children was higher on the car task
compared to the cursor task. We hypothesized this due to
greater engagement in moving a flashy, red toy as compared
to the more mundane cursor. Although we did not fully
quantify task interest, an important aspect to controlling BCI is
maintaining attention (Nijboer et al., 2010). Such abilities are also
developmentally sensitive and may relate to our observations of
lower performance in younger participants. Our results suggest
that the task is an important consideration and should aim to
be captivating when intended for pediatric populations. Other
factors, such as gaming applications or peer competition might
further motivate children.

The GO strategy was associated with better performance as
compared to MI which was unexpected. While MI is the most
commonly used BCI mental task (Scherer et al., 2013), it might
be less intuitive in some cases. The main effect of strategy
primarily stemmed from a decrease in MI performance during
the cursor task as there was no difference between performance
using the two strategies for the car task (Figure 3). One possible
explanation for our result is that the cursor task moved the cursor
to the right while the car task moved the car forward. Moving
an object to the right by opening and closing both hands seem
unintuitive.

We anticipated that children would improve their
performance with practice, but only found a non-significant
difference. Furthermore, a possible association between time
and trial number emerged when strategies were examined
separately (Figure 4B). One possible explanation could be the
mental fatigue experienced toward the end of the trial. Another
possibility could be that children had difficulties reproducing the
same thought strategy throughout the 10 trials. Studies including
more training trials or sessions may be able to better elucidate
learning effects of BCI performance in children.

Our results carry translational significance. Cerebral palsy
affects 17 million people worldwide, a large portion of whom have
severe quadriplegia with minimal or no motor function. Within
this group, a significant proportion have preserved cognition,
resulting in a locked-in state. There is only limited evidence
that pediatric cerebral palsy populations can benefit from BCI
(Jang et al., 2016; Kim and Lee, 2016). While implantable BCI
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is accomplishing remarkable functional achievements in adults
(Bouton et al., 2016), such invasive systems are neither available
nor practical in young children. Instead, working backward from
the simple technologies we studied here may allow pediatric BCI
applications to achieve more functionality in disabled pediatric
populations, allowing them to interact with their world and
achieve greater levels of independence and quality of life.

Limitations
Differences between our BCI skill measures and previous
research (Pfurtscheller and Neuper, 2001) limits comparisons.
This is due to the practical requirement of our BCI system for an
all-or-none measurement. To better compare children and adults,
future trials might test both populations on identical protocols.
Although the systems employed carried multiple compensations
for potential artifacts such as movement, we did not have access
to confirm their effectiveness. We have not yet studied the origin
of the EEG signals driving BCI success where the use of richer
EEG-BCI systems might further inform pediatric differences
though invasive cerebral monitoring suggests mechanisms are
likely similar (Breshears et al., 2011). There was substantial
variability in individual’s BCI performance (Figure 2), suggesting
larger sample sizes may be required to detect more subtle
differences. Similarly, lengthening the testing phase to include
more trials could better define the effects of age, sex, strategy,
and learning. Another possible issue of generalizability relates to
selection bias. Our population was taken from families who have
demonstrated interest in research with potential implications on
levels of motivation, intelligence or other factors which may not
be generalizable to all pediatric populations.

CONCLUSION

Children can quickly achieve control and execute multiple tasks
using simple EEG-based BCI systems. Performance depends on
strategy, task and age. Such success in the developing brain
mandates exploration of such practical systems in severely
disabled children.
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